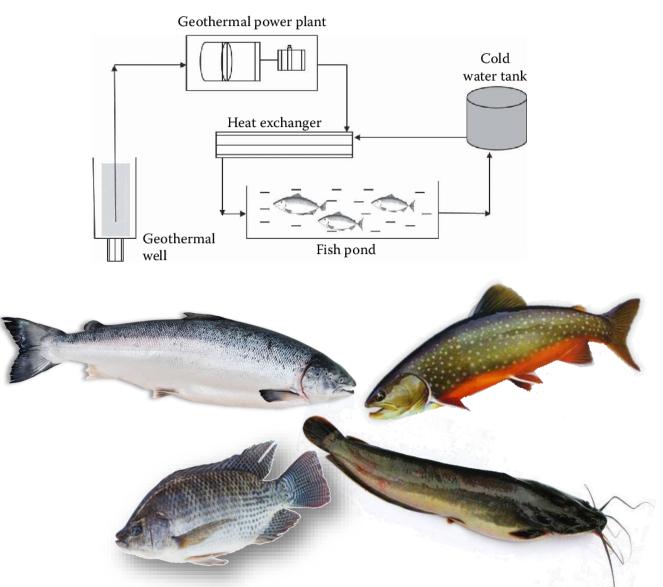
Geothermal Potential in Whiteleg Shrimp Recirculating Aquaculture Technology

Klaipeda University

Marine Research Institute


Nerijus Nika, Gintautas Narvilas

Geothermal aquaculture – innovative solution

- Purpose to heat the water to optimal temperatures (13-30 °C) for cultivated organisms
 - Regulating temperature could increase growth of aquacultured organisms by 50-100 %.
 - Heat exchanger technology or direct use
- Leading countries: China, USA, Iceland, France, Hungary, Italy, Israel, New Zealand and others
- Species: tilapia, salmon, trouts, bass, catfish, sturgeon, shrimps, lobsters, microalgae etc.
- Very much related to aquaponics technology to heat greenhouses.
- Environmental and marketing aspects clean, green energy (CO₂ zero emission), low environmental impact, sustainable production

Geothermal aquaculture in Lithuania?

- Western Lithuanian Geothermal Anomaly
 - In the deep of 1300 m the water is 38 °C warm
 - Significant geothermal resources from Devonian-Cambrian aquifers
- The first and only geothermal power plant Geoterma was seeking for diversification of its geothermal heat application to create higher added value – blue biotechnology and/or aquaculture
- Several feasibility studies indicated that the most suitable species for geothermal aquaculture applicaton – shrimp (whiteleg shrimp *Litopenaeus vannamei*)
 - Optimal temperature 28-32 °C
 - Eurihaline species, however natural habitat salinity is >30 ppt
- What is the efficiency of shrimp warm saltwater RAS technology in local conditions?

KLAIPÉDA SCIENCE AND TECHNOLOGY PARK

Supply Chain for geothermal aquaculture Feasibility study

KLAIPĖDOS MOKSLO IR TECHNOLOGIJŲ PARKAS

First shrimp RAS in Lithuania

- Pilot infrastructure created within **InnoAquaTech** project Development and transfer of innovative and sustainable aquaculture technologies in the South Baltic area.
- RAS for *L. vannamei* shrimp cultivation integrated with renewable energy sources at KU Business Incubator
- The goal is to acquire shrimp cultivation knowledge and to optimize growth technology for local conditions.

K

- Drum filter
- Biological filter
- Sump
- Protein skimmer
- Denitrification filter
- Oxygenation cone
 - Heater
- UV
- Monitoring and control system

SER GAAS

K

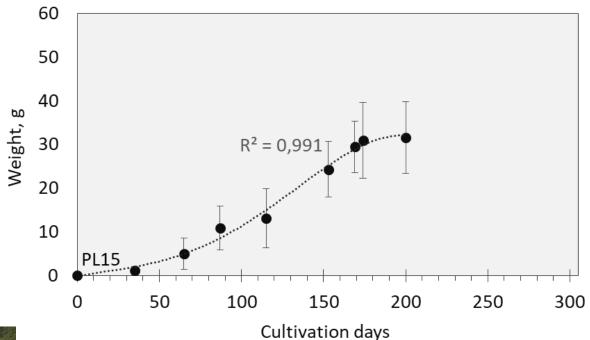
22

Salt water preparation system

First shrimp RAS in Lithuania

General parameters of the system:

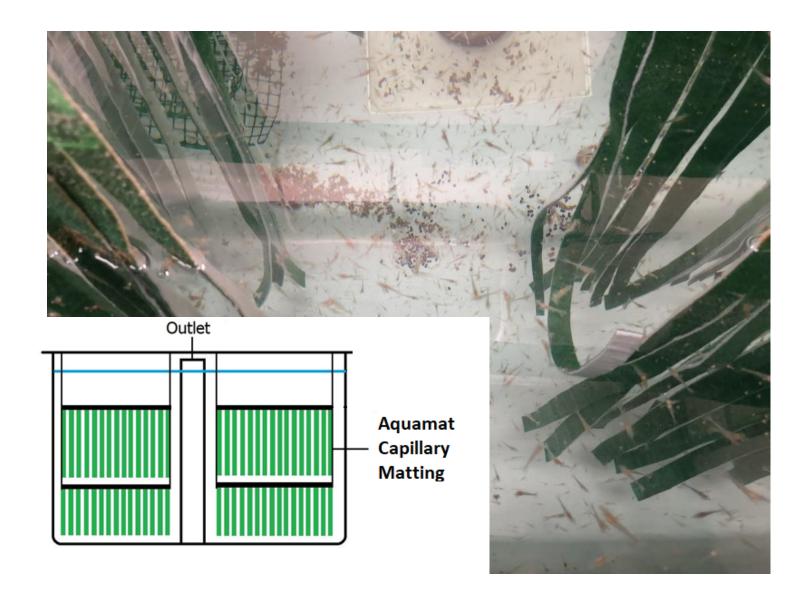
- Artificial saltwater RAS
- Uses solar energy
- Unique to LT denitrification filter
- System setup in two rooms
- Water volume ~40 m³
- Daily water loss ~2 % (so far)
- 8 rearing tanks, surface area ~29 m²
- Max yield/cycle ~145 kg (5kg/m²)
- Electricity consumption 5 kW/month
- 2 employees


First results of growing L. vannamei

- Temperature 28.5 (28-30)°C
- Salinity 15-16 ppt
- Good nitrification, but problems with denitrification
- Growth to the market size took 5 months and average size was 24.3±6.4 g (up to 40 g)
- Stocking density 2,5-3 kg/m²
- Total harvest 80 kg
- FCR 1,9-2,0

Feeding rate ~2%, manually x4/day Growth rate 0.18 g/day Mortality ~65 % Handling mortality: 20-25 % Cannibalism observed Jumping issue

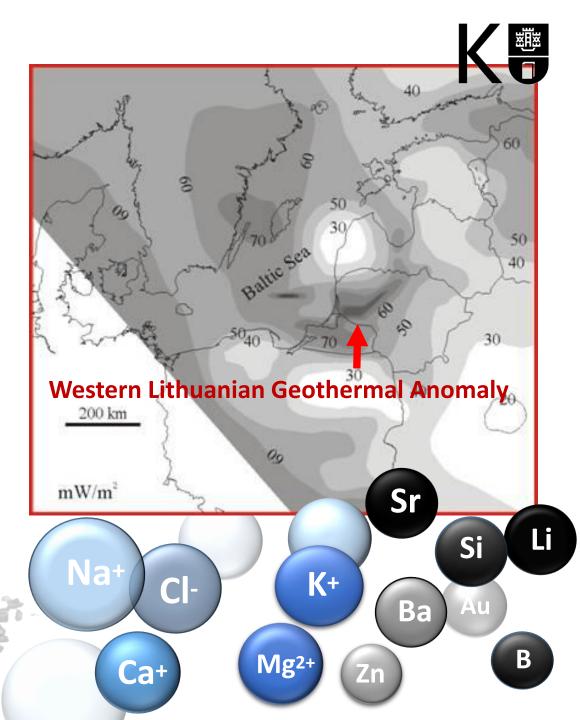
First harvest



K

Issues to be solved

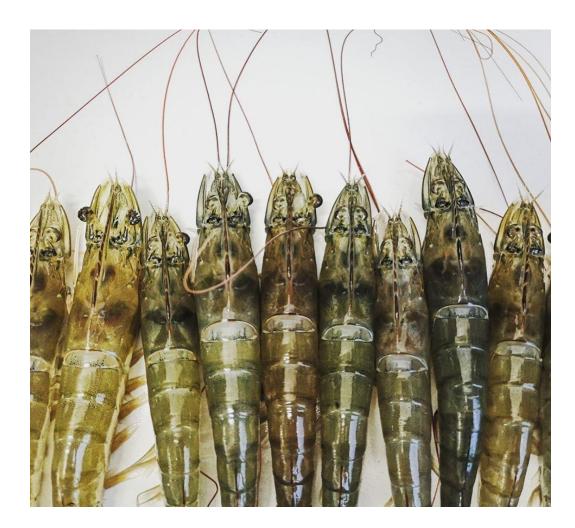
- To run fully loaded system
- Denitrification filter
- To optimize water quality
- Feeding management
- Reduce mortality
- Unequal growth rate during first few months
- Shrimp tank design extra surface area


Geothermal potential?

- Heating was not as crucial as it was thought initially
- High operational costs for reconstituted sea salt (RSS)
 - Solutions:
 - Low cost salt mixture LCSM: (Na, Mg, Ca, K chlorides, Mg sulphate)
 - Geothermal brine (110 g/L) from 1300 m deep Cambrian aquifer, which is highly rich in sodium, calcium, magnesium and other, including trace, elements.
 - Concept of direct use of geothermal water from the large and shallow Upper-Middle Devonian aquifer containing 15-35 g/L salts and 20-30°C temperature.
 - Technical aspects
 - Legal aspects

Geothermal potential?

- Heating was not as crucial as it was thought initially
- High operational costs for reconstituted sea salt (RSS)
 - Solutions:
 - Low cost salt mixture LCSM: (Na, Mg, Ca, K chlorides, Mg sulphate)
 - Geothermal brine (110 g/L) from 1300 m deep Cambrian aquifer, which is highly rich in sodium, calcium, magnesium and other, including trace, elements.
 - Concept of direct use of geothermal water from the large and shallow Upper-Middle Devonian aquifer containing 15-35 g/L salts and 20-30°C temperature.
 - Technical aspects
 - Legal aspects


Geothermal potential

Marine recirculating aquaculture technology development

- Shrimp tower concept
- Assessing the effects of water salination for freshwater species
- Geothermal water application economic and biological effects and technical possibilities

Final goal: aquire competences necesary for the development of marine recirculating aquaculture like salmonid grow-out RAS or large-scale shrimp aquaculture by using unique coastal geothermal resources

Thank You!

Blue Platform

Klaipeda University

Marine Research Institute

InnoAquaTech

